
 1

The Century Date Change Software Problem

Robin Guenier – September 2011

Executive Summary

Many commentators, comparing its seemingly trouble free outcome with
predictions of disaster, have claimed that the Century Date Change Problem
(better known as Y2K or the Millennium Bug) was little more than an unjustified
scare and an irresponsible waste of money. The objective of this paper is to
demonstrate, by explanation, example and reference, that they are wrong.

The paper is divided into eight sections. The first is a short introduction and the
second a note on the problemʼs historical background, noting that it wasnʼt
exclusively a computer problem and explaining how the use of two digits, not
four, to designate the year – e.g. “70” instead of “1970” – was a standard
practice in early computer programming. Section 3 (“The Challenge”) shows
how this became a serious problem: whereas two digit references worked
perfectly well when only twentieth century dates were being processed, they
didnʼt when twenty-first century dates were involved. Thus, in the twentieth
century, it was possible to calculate someoneʼs age by subtracting their birth
year (say 50 – i.e. 1950) from the current year (say 90 – i.e. 1990) – getting 40.
But, when, for example, 50 (i.e. 1950) is deducted from 08 (i.e. 2008), the
answer is minus 42. The section explains, with examples of actual failures, how
– had this not been fixed – it would have had major and widespread impact. This
is supported by references to statements by the Bank of England and the Bank
for International Settlements. Finally, section 3 reviews the special problems that
arose in relation to personal computers and so-called “embedded chips”
(devices that monitor and control a wide range of electronic systems, e.g. safety
monitors in power generation plants). It reviews how PCs and embedded chips
turned out to be rather less of a problem than had been initially feared.

Section 4 (“The Solution”) reviews what had to be done to solve the two-digit
problem. It shows how the seemingly simple task of turning two-digit references
into four-digit references was far from simple in practice – especially when, as
was commonly the case, a system had to work smoothly in relation to third party
systems. It shows how “fixing” a system wasnʼt the end of it – fixes had to be
rigorously tested and often adjusted and retested. It was this fixing and testing
that cost so much money: almost every large organisation in the developed
world had systems containing potentially critical two-digit year references.

Section 5 (“Criticisms”) deals with the “unjustified scare” and “irresponsible
waste of money” claims. Referring back to the earlier sections, it demonstrates
how the problem and its potential impact were real and justifiably worrying. So
why has it become so widely regarded as a scare? A suggested reason is that it
seemed so unlikely that the IT industry would have allowed such a dangerous
state of affairs to exist: surely, if it were real, the industry would have dealt with it

 2

long before the 1990s? Unfortunately it didnʼt and the problem was permitted to
reach a critical point. Another possible reason was the mediaʼs characterisation
of warnings (“if action isnʼt taken, the consequences could be dire”) as
predictions (“the outcome will be dire”). The classic example was the commonly
repeated “experts tell us that planes will fall from the sky”. No “expert” said that.
Most avoided prediction altogether.

Section 5 deals also with the claim that businesses and, especially, countries
that did little or nothing had few or no problems. The reality is that, whereas
many small and medium sized businesses had few problems (essentially it was
a problem for big organisations with significant amounts of “legacy” software),
most countries throughout the world were involved in remedial action. Banking
and telecommunications are, for example, intrinsically international activities: a
system was not fixed until all the systems to which it related were fixed.
Nonetheless, the problem was considerably more serious in some countries
than in others: there was, for example, little computerisation in Chad and Haiti.
Also, unlike the developed Western economies, economies that came late to
computing didnʼt rely on software originally developed in the 1960s and 1970s.
Moreover, those businesses and countries that started Y2K remediation late
were able to take advantage of the experience gained and lessons learned by
the pioneers. Such considerations explain the – essentially false – claims that,
for example, Italy and Spain did little about Y2K.

Then thereʼs cost: was it really necessary to spend around $300 - $500 billion?
The answer is that it was a huge task and an organisationʼs cost – when spread
over 2 to 3 years – was usually not a big percentage of its IT budget. Thus the
average UK clearing bank spent about £300 million: not much when compared
with the cost (£270 million) incurred last year by a German bank in fixing just
one small date related problem.

The section ends by noting that, although the outcome was relatively benign, the
examples of actual failures referred to show that, without the action taken, it
might well not have been. Those who got on and fixed the problem took the only
rational and responsible course.

Section 6 reviews some date-related problems that occurred in 2010 (the Year
2010 (or Y2.01K) Problem) and Section 7 (“Some Observations”) some useful
matters that arose from Y2K remediation: unexpected benefits (e.g. the
development of business continuity planning as a standard procedure),
important lessons about project management (lessons seemingly not learned),
and a better understanding of the importance of computing to business and
society.

Section 8 (“Conclusion”) notes that anyone who believes Y2K to have been a
scare, a hoax or a waste of money hasnʼt tried to understand it: it was, in fact, a
bizarre, unnecessary but real and seriously worrying problem.

The paper ends with references, notes and links.

 3

1. Introduction

This paper was prompted by an articlei by Donna Laframboise dated 9 August
2011 and entitled The Y2K Scare, the Media & Climate Change. In it, she
quoted various catastrophic predictions about the Y2K computer problem and,
referring to the fact that in the event little went wrong, she drew parallels with
current climate change scare stories – her assumption being that these stories
are equally poorly based. She observed “potentially hundreds of billions of
dollars that could have been spent finding a cure for cancer were flushed down
the toilet by governments and corporations in a mad rush to avert an imaginary
Y2K catastrophe”. In other words, she assumed that, because scary scenarios
didnʼt occur, the effort to avoid them was unnecessary – referring to the whole
thing as “an embarrassing … episode”.

I believe she, and other commentators who have made similar points, are wrong
about this and my objective here is to explain why. I draw no conclusion about
whether or not sheʼs also wrong about climate change – thatʼs an issue well
beyond the scope of this paper.

A note on terminology

Iʼve called this paper “The Century Date Change Software Problem” as I
consider that the most accurate description of what came to be widely and
conveniently known as “Y2K”. Other names – such as “The Century Date
Change Problem”, “The Year 2000 Date Change Problem” and “The C2000
Problem” were also used, as was the misleading but catchy “Millennium Bug” –
misleading because a computer “bug” refers typically to an error, mistake or flaw
(for example in logic or syntax) in a computer program. Y2K was not a bug – nor
was it a “virus”. As explained below, it was a deliberate and, at the time,
sensible and successful solution to a serious problem: the huge cost of
computer memory in the early days of computing. The mistake was allowing
software incorporating that solution to continue for so long.

A personal note

I first heard about the problem in early 1996 when I was Chief Executive of the
UK governmentʼs Central Computing and Telecommunications Agency (the
CCTA), reporting to the Cabinet Office. It was an interim appointment – I was a
general manager recruited from the private sector to assess the future of and to
reorganise the CCTA. I had no specialist IT experience. From later in 1996 to
2000, I was Executive Director of Taskforce 2000, tasked by the government
with raising awareness of the Y2K problem.

 4

2. Background

The Y2K problem derives from the common and useful practice of using two
digits rather than four to designate a year – common because itʼs an easy
shortcut and useful because, over most of a century, itʼs usually obvious what is
meant. Thus, in the old song My Darling Clementine, the description of
Clementineʼs father as a “miner forty-niner” would have originally – and for many
years – been understood as referring to someone who joined the 1849
Californian gold rush. Even today itʼs obvious what a reference to the “Twenties”
or the “Sixties” means and most credit cards still have the year embossed on
them in two digits. Useful, yes – but it can go wrong. Thus thereʼs a story that,
when her husband died, his wife had a tombstone prepared for them both: his
dates were inscribed as “1900-1991” and hers as “1920-19 ”. But she died
after 1999ii. This was not an isolated case: itʼs reported that in the United States
there were around 500,000 cases where an expected death in a year beginning
“19” had already been set in stone for someone still alive in 2000iii.

So the problem wasnʼt exclusively a computer problem. The use of two digits for
the year for computers probably goes back to the practice of using two digits in
punch cards in the early years of the twentieth century: punch cards were space
limited (under 100 character columns), so it made obvious sense. Likewise,
when computers were first introduced for business purposes in the 1960s,
electronic storage was extremely expensive – about a million times more than it
is today. So it was a practical and seemingly harmless practice to store the year
element of a date in a two-digit rather than a four-digit field: e.g. “31-12-70”
instead of “31-12-1970”. Hereʼs a comment by Alan Greenspaniv:

“I'm one of the culprits who created this problem. I used to write those
programs back in the 1960s and 1970s, and was proud of the fact that I
was able to squeeze a few elements of space out of my program by not
having to put a 19 before the year. Back then, it was very important. We
used to spend a lot of time running through various mathematical exercises
before we started to write our programs so that they could be very clearly
delimited with respect to space and the use of capacity. It never entered
our minds that those programs would have lasted for more than a few
years. As a consequence, they are very poorly documented. If I were to go
back and look at some of the programs I wrote 30 years ago, I would have
one terribly difficult time working my way through step-by-step.”

It usually worked well: for example, in 1965 the age of someone born in 1910
would have been calculated by deducting 10 from 65, giving 55. However, it
wouldnʼt work for someone born before 1900, so workarounds had to be devised
for such special cases. But that didnʼt, for example, apply to Mary Bandar of
Winona, USA who, in 1992, was invited to join an infant class as she was born
in “88” – but Mary was 104 years oldv. However, such examples were not seen
as a serious problem: computers were then relatively rare and, as the years
passed, there were increasingly fewer people born in the nineteenth century.

 5

The use of two digits became a programming standard that continued into the
1970s, and even the 1980s. It worked, it saved expensive space and, in any
case, as Alan Greenspan said, programmers didnʼt think their work would last
for more than a few years: the fact that it might cause problems at the end of the
century wasnʼt really considered. But it did. So “31-12-00” would be read as “31-
12-1900” (or rarely as “31-12-19100”), not as “31-12-2000”. (Itʼs already hard –
in 2011 – to appreciate just how unreal a year starting with the digits “20”
seemed to someone in 1970, even in 1990 – hence the widespread practice of
referring to the first year of the new Millennium as “The Year 2000”, not simply
“2000”.)

Unfortunately many programs utilising these two digit date references were not
changed or replaced. Instead, they were incorporated into new programs and
gradually buried within millions of lines of computer code – commonly losing the
original programmerʼs notes and/or source code (the “key” that enables
programmers to understand or modify a program). This was especially so for
very large custom designed programs typically used by large organisations such
as banks and government departments. And it should be noted that these old
date references existed as part of established programs that had stood the test
of time: and they had worked reliably – unlike many more recently introduced
systems. And thus they were taken for granted.

3. The Challenge

So the essential problem was the widespread use of two-digit date references
throughout the software commonly employed by large organisations. It was
extraordinary (and frankly irresponsible) that as late as 1996, only four years
before the date change, few people in the IT industry seem to have said much
about it. Yet software that was unable to process date information correctly
when, for example, a date in a pre 2000 database was matched or compared
with a post 1999 date, was plainly going to cause problems, many potentially
serious. For example, in the finance and insurance industries, interest
calculations would be in error, credit card expiry dates would fail, fund transfers
would be disrupted, interest payments would be incorrectly calculated, lease
records would cease to make sense, policy due dates would be incorrect,
annuities, pensions and other entitlements would be miscalculated and billing
records would malfunction.

Probably the best way to demonstrate how a failure might happen is to consider
two simple examples of the relatively few failures that actually did occur, one
before the date change and one afterwards.

The firstvi concerned credit card swipe machines in the UK that rejected
cards with post 1999 expiry dates. It happened because it read them as
having already expired (e.g. in 1900) and affected about 20,000 machines
– 2% of UK retail outlets using such machines. The manufacturer, Racal

 6

Electronics, said it “was unable to explain how the malfunction was missed
when the company went over its plans for the year 2000 date change”.
Clearly, were it not for such plans, Racal would have been in serious
trouble.

The secondvii came to light in 2002. A Health Visitor in Yorkshire noticed a
higher than usual number of babies with Downʼs Syndrome in her area.
What had happened was that pregnant women who were referred to the
National Health Serviceʼs Northern General Hospital in Sheffield as
possibly being at risk of having babies with birth defects were initially
screened by a routine designed to identify those at highest risk. A major
factor was age (women over 35 were at higher risk) so that was a main
focus of the screening process. Unfortunately, the PathLAN computer used
for the task used a two-digit system. Therefore, if a woman born in 1962
presented in 1999, the computer deducted 62 from 99, getting 37 – over
35, so she was at risk. But, if the same woman presented in 2000, it
deducted 62 from 00, getting minus 62 – under 35, so (it concluded) she
was not at risk. This affected over 150 women.

In the 1990s, Racal Electronics was the UKʼs leading manufacturer of electronic
devices for inter alia the finance, telecommunications and defence sectors, both
in the UK and overseas. Had it decided in 1997 that money spent on fixing the
Y2K problem was – to use Ms Laframboiseʼs phrase – “flushed down the toilet”
and had not instituted its date-change plan, there would have been very many
more malfunctions than those relatively few card readers that escaped their net.
Likewise, the NHS utilises vast numbers of dates for a huge range of purposes,
from scheduling operations to “use-by” dates for drugs. Had it decided it would
be a waste of money and effort to institute its massive and costly Year 2000
compliance programme (better perhaps to spend the money on cancer
research), vastly more people would have been affected than those unfortunate
women in Yorkshire. There would have been nothing imaginary about the
resulting catastrophe for UK healthcare. And, were all these failures happening
at around the same time, it needs little imagination to see that the impact on
society would have been most significant – more significant than the combined
impact on the businesses and individuals affected individually. And that
assumes the problems affected only electronic equipments and healthcare. But
of course the correct processing of date information is critical throughout nearly
all aspects of modern life.

A prime example is banking – both nationally and internationally. Hereʼs an
extract from a News Releaseviii (the first of a series) issued by the Bank of
England (the UKʼs central bank) in February 1998:

The origin of the problem lies in the programming methods used in earlier
years, when computer memory was expensive and the use of two digits
rather than four to represent the year was an efficient short-cut. Many of
those programs, or elements of them, are still in use, and while the
problem is simple to describe it is so widespread and pervasive that the

 7

cost and complexity of correcting it represents a massive burden on
business. [My emphasis.]

The then Governor of the Bank (Eddie George) is quoted as saying:

"The financial system - especially in a centre as large and diverse as
London - is highly interdependent and the failure of one quite small part
can easily have substantial knock-on effects. And the failure of parts of
the infrastructure could be catastrophic.” [My emphasis.]

The Bank, and especially its Governor, is noted for caution and understatement.
So Mr. Georgeʼs use of the word “catastrophic” is significant. He plainly didnʼt
see the potential for catastrophe as “imaginary” (Ms Laframboiseʼs word). But
neither was he making a prediction: thereʼs a vast difference between prediction
and his “could be” warning.

The Bank of England was not alone in issuing a serious warning. Its statement
followed a press releaseix and a technical paperx published in September 1997
by the Bank for International Settlements in Basel (The year 2000 - A challenge
for financial institutions and bank supervisors) and addressed to central banks
worldwide. Hereʼs an extract from the Press Release:

At their meeting in Basle on 8th September 1997, the central-bank
Governors of the Group of Ten reviewed the need for financial institutions
to check all their computer applications in advance of the new millennium.
Not only will a large number of applications have to be converted or
replaced, but extensive testing will be necessary to ensure that all
operations run smoothly after conversion.

And from the Introduction to the technical paper:

Failure to address this issue in a timely manner would cause banking
institutions to experience operational problems or even bankruptcy and
could cause the disruption of financial markets.

Following that statement, similar warnings were made by other central banks in
the developed economies – for example by Mr. Ernest T Patrikis, First Vice-
President of the US Federal Reserve Bank, in a detailed statement made in
June 1998 before a Committee of the US House of Representatives.xi

The reason why the potential impact of the date-change problem on banking
was regarded as especially important was, as Eddie George pointed out, the
interdependence or interoperability of international financial systems whereby a
failure in one bank could cause knock-on failures elsewhere. Finance in the
developed world had become, in effect, a single, highly complex and therefore
very vulnerable system. For example, in his evidence to the US House of
Representatives (see above), Mr. Patrikis noted that banking activities are
dependent on “a large, geographically diverse and highly computer intensive

 8

global infrastructure for each of the key phases of … activity – from trade
execution through to payment and settlement”. He illustrated this with an
example:

“…consider the daily financial market activities of a hypothetical US-based
mutual fund holding stocks and bonds in a number of foreign jurisdictions.
Such a mutual fund would likely execute trades via relationships with a set
of securities dealers, who themselves might make use of other securities
brokers and dealers, including some outside the United States. The
operational integrity of the major securities dealers in each national
securities market is critical to the smooth functioning of those markets. In
addition, securities trading in most countries is reliant on the proper
functioning of the respective exchanges, brokerage networks, or electronic
trading systems and the national telecommunications infrastructure on
which these all depend. Financial markets today are also highly dependent
on the availability of real-time price and trade quotations provided by
financial information services. For record-keeping, administration, and
trade settlement purposes, our hypothetical mutual fund would also likely
maintain a relationship with one or more global custodians (banks or
brokerage firms), who themselves would typically maintain relationships
with a network of sub-custodians located in various domestic markets
around the world.”

International finance was particularly vulnerable: References viii, ix, x and xi
provide a comprehensive view of that vulnerability. Yet its full nature was poorly
understood at the time – a benefit of Y2K is that it is better understood today.
But, although international finance raised especially serious concerns, the
problem had, as noted already, far wider implications. For example, re
healthcare, the UKʼs National Health Service was mentioned above (page 6).
And, in the USA, a committee of the House of Representatives reviewed
progress in resolving the healthcare issues in May 1998xii. Wider implications
were well illustrated by what was probably the UKʼs first government note on the
matter (an overview briefing for Members of Parliament) issued in December
1996xiii. It included a short but comprehensive explanation of the problem and
referred to the dangers of knock-on failures:

Because of the ubiquitous nature of the effects and the very short time
interval in which they may act at the turn of the century, some see a
danger that a ʻdomino effectʼ might cause IT systems to fail throughout
whole sectors of the economy. [Original emphases.]

Nevertheless, the briefing avoided any hint of alarm (note that “might cause”)
and stressed, in particular, uncertainty about the consequences of failure –
noting however that an IT failure can be grave. It urged organisations to treat
Y2K (then referred to as “Y2000”) “as a business, not just a technical, problem”.
This briefing, the bankersʼ warnings and the US healthcare report referred to
above were all serious warnings but were a long way from illustrating Ms

 9

Laframboiseʼs assertion about a “mad rush to avert an imaginary Y2K
catastrophe”.

This paper has, so far, focussed on how computer software, especially in large
systems, had inherited a programmersʼ solution to the extreme cost of memory
in the early days of computing. It was this that caused the most serious
problems. But there were other date-change concerns. For example, one that
caused some difficultyxiv was uncertainty about whether or not 2000 was a Leap
Year. The rule is that a year divisible by 4 is a leap year, unless itʼs divisible by
100. However, there is an exception to this: years divisible by 400 are leap
years. Therefore, although 1800 and 1900 were not leap years, 2000 was a leap
year. Problems were likely to emerge at the end of 2000 – and at least one didxv.
(An overview of this, Blame the madness on Dennis the Short xvi, is interesting).

Two other areas of concern were personal computers (“PCs”) and so-called
“embedded chips”:

Personal computers

Some PC operating systems (e.g. older versions of “DOS” and Windows)
included elements that couldnʼt cope with the 1999/2000 transition. And
some might contain software that could produce unexpected results after
the date-change: e.g. older versions of the Compuserve email system used
a two-digit year that caused incoming messages in January 2000 to be
treated as if they were older than messages received in 1999 or before:
just as “98” is smaller than “99”, so “00” is smaller than either. The result
was that incoming emails, which the recipient would expect to find at the
top of their Inbox, were at the bottom and thus appeared to be lost. Another
example might be where someone had (unwisely) created a spreadsheet
using two digits for the year. Working well when only dates in the twentieth
century were being processed, this could produce unpredictable problems
as soon as it had to deal with dates in the twenty-first century. Further,
earlier versions (typically produced before 1997) of some standard
business applications, e.g. accounting packages, might not handle the
date-change correctly.

In the event, although there were some problems (largely affecting
personal users rather than businesses), few were serious and most were
easily remedied, e.g. by users ensuring systems were upgraded to the
latest version of software. Advice to PC users was widely availablexvii
(note: there were many fewer users than there are today) and commonly
suppliers – e.g. suppliers of standard business accounting packages –
provided their customers with compliant versions at no charge well before
the end of 1999.

Despite some genuine initial fears (and media scare stories and
commentaries), most who understood the issue did not expect the
transition to 2000 to cause important difficulties for PCs and other similar

 10

equipments such as so-called microcomputers and workstations. And that
proved to be the case. This was especially true of small or medium sized
PC (or microcomputer) reliant businesses where, in most cases, software
suppliers had ensured their customers were using compliant software. In
any case, problems that occurred after the date change were usually easily
remedied.

Embedded chips

In contrast, so-called embedded chips were regarded, from the beginning
of the campaign to resolve the Y2K problem, as a serious potential
problem, largely because it was hard to quantify what the effect of their
failure might be. Such chips are monitoring devices commonly installed at
the heart of a wide range of electronic systems such as cash registers,
security doors, process controllers, some medical equipment and, in
particular, safety critical systems such as devices ensuring that
equipments such as lifts (elevators) would not operate unless they had
been recently serviced. What, for example, would be the effect of a chip
“thinking” that an action – such as routine maintenance – undertaken after
the transition from 1999 to 2000 had been taken 100 years ago?

There was particular, and understandable, concern about the possibility of
major breakdowns in the telecommunications and utilities industries (power
generation, water supply etc.) and, for example, in chemical plants and oil
refineries where embedded chips control a vast range of functions and
where failure could potentially have far-reaching consequencesxviii.

And some problems did occur. For example, in May 1998, the Ottawa
Citizen reported that Chrysler closed an assembly plant and turned the
clocks to 31 December 1999 to satisfy itself that all would be well at the
transition. But it was disappointed: as Robert Eaton, Chryslerʼs Chairman,
is reported as saying, “We got lots of surprises. Nobody could get out of
the plant. The security system absolutely shut down and wouldn't let
anybody in or out. And you obviously couldn't have paid people, because
the time-clock systems didn't work." And the UK briefing for Members of
Parliament (see page 8 and Reference xiii) mentioned another example: at
Marks & Spencer (a British retailer) a computer required new canned
goods to be discarded because their bar codes indicated sell-by dates of
“02” – which it read as meaning 1902, not 2002.

Although initial fears were justified, in the event few problems turned out to
be serious. That was largely because key industries – most especially the
telecommunications and utilities industries – had taken the threat seriously
and put a lot of effort into checking and, where necessary, into remedialxix
and contingency action (see, for example, Reference xviii). Moreover, chip
manufacturers advised customers of potential problems and, where
necessary, replaced non-compliant with compliant equipments. The Racal
Electronics action referred to above (p.6) is an example of this although, as

 11

noted, some credit card swipe machines were nonetheless overlooked – a
case of the exception proving the rule. The Otis Elevator Company
provides another example of a manufacturer taking responsibility. It was
confident that its equipments would not cause any problems but
nonetheless worked with customers to allay any fearsxx.

In summary, although PCs and embedded chips were a cause of justified
concern, on the whole it proved to be relatively easy for users and equipment
manufacturers and suppliers to ensure effective remedial action was taken well
before the date-change – this applied in particular, to most small and many
medium size businesses that had to do little and experienced few problems.

But that was not true of the essential challenge: overcoming the widespread use
of two-digit date references throughout the custom software utilised in large,
often interconnected, computer systems: the UK government briefing referred to
in page 8 (and see Reference xiii) considered that “about 80% of all mainframe
computer systems contain two digit year references in their programs”). It was
that inheritance that was the most serious problem and the one most difficult to
eradicate.

4. The Solution

Resolving that challenge turned out to be a massive taskxxi. And the fact that it
was largely successful is a tribute to the outstanding work done by those
involved. It wasnʼt a high tech operation: it didnʼt require esoteric computer skills.
What had to be done is simply stated: find two-digit year references and ensure
(e.g. by turning them into four-digit year references) that they would not cause
problems in relation to the date change. But achieving that was not simple. And
it turned out to hugely expensive.

Although it may sound easy enough in theory, in reality the task was quite
exceptionally complex. For example, two-digit date fields were “hidden” within
untold millions of lines of computer code, some of it about thirty years old. And
as already mentioned, in many cases, the original programmerʼs notes and
source code were long since lost. So those engaged in this thankless task had
to drag their way through line after line of dense computer code (commonly
written in a variety of programming languages), often without any guide as to
what they were looking for or to where they might find it. And often while
continuing to run their daily work. They had to examine not only programs and
files in current use, but also those that had been archived or stored. And, having
found what appeared to be a two-digit year reference, they had to be sure it
really was – after all, “55” might mean 1955 or it might refer to a myriad of other
possibilities, such as someoneʼs age. Then they had to determine if it really had
to be fixed (it might never, for example, relate to the new century) and, if so, how
best to fix it. The obvious solution was to simply expand the date field from two
to four digits so that, in due course, “1999” would be succeeded by “2000”. But it

 12

was not unusual for that to be impossible because of the nature of the code
where the date was found. For example, a change might have damaging knock-
on effects elsewhere. In such cases, the only solution might be to write or
purchase a completely new suite of software. But even that solution could then
cause difficulties with other software with which it interfaced within a wider
system where, for example, that other software had been fixed by using a
different date solution. Moreover “fixing” a system was commonly not enough: it,
in turn, had to be able to work seamlessly with third party systems. Thus a
bankʼs trading system would have to be compatible with that of all the other
trading systems with which it corresponded – many of them overseas. See, for
example, Reference xi: a US Federal Reserve statement made to a House
Committee in 1998. And, of course, those corresponding banks were probably
fixing their own date-change problems. (Also it should not be forgotten that the
teams dealing with all this usually had to ensure also that there were no
problems with PCs and embedded chips.)

A solution that avoided the common problem of expanding a two-digit field to a
four digit-field was a technique called “windowing”. This might involve software
being reconfigured so that years entered as, say, 00-19 were assumed to
represent 2000 to 2019, and years entered as 20-99 to represent 1920 to 1999.
But this has serious drawbacks: for example, a system reconfigured in this way
wouldnʼt for example recognise 1919, would have problems interfacing with
systems that were differently configured and, above all, would start to fail as
2020 approached: see Section 6 (page 17) and Reference xxxix for examples
of failures arising around 2010 (“The Y2.01K” problem). Windowing was one of
various unsatisfactory Y2K fixesxxii.

But, although difficult enough, finding and fixing the software wasnʼt the end of it:
once “fixed”, the software had to be rigorously tested. And there would inevitably
be some failures (there nearly always are with complex software) so, quite often,
new fixes had to be devised and retested. Moreover, the testing couldnʼt of
course be confined to that specific software – all those third-party interfaces had
to be tested as well. And the testing could itself could cause problems: for
example, a serious incident occurred in testing of a US spy satellite systemxxiii.

Overall, it was a massive task: almost every large corporation or government
department in the developed world had systems that at least potentially
contained critical two-digit date references. The exceptions were usually those
that, for one reason or another, had replaced their principal software systems in
the 1990s – some in anticipation of the date-change. And even they couldnʼt
always be completely sure they were exempt. Probably the worldʼs biggest ever
computer-related undertaking, it was – unsurprisingly – very expensive. Yet,
despite the justified fears expressed in 1996, 1997 and 1998, it was largely
successful. The world owes a debt of gratitude to those, often relatively junior, IT
staff who carried out this quite exceptionally boring and unglamorous
undertaking. Yet, not only is that debt largely unrecognised, but the fact that the
job was done at all is commonly criticised – even mocked.

 13

5. Criticisms

The efforts of those who carried out the huge, important and largely successful
task outlined above have largely gone unrecognised because itʼs become
almost universally accepted that Y2K was, at best, grossly exaggerated and, at
worst, was a hoax – a scam, an illusory scare created so that a few computer
“experts” could make a lot of money.

Yet a review of the facts, references, evidence, examples, etc. set out above
demonstrates plainly enough that the problem was real – and sufficiently serious
to warrant urgent remedial action. After all, anyone claiming it was a hoax or
was imaginary (and therefore that action was unnecessary) must logically
believe one of the following: (1) that two digit date references were not used in
early computer software; or (2) that, if they were, they would, without human
intervention, somehow be able to cope with the interaction between dates in the
twentieth and twenty-first centuries; or (3) that, even if they were unable to cope,
the consequences of that inability would be trivial; or (4) that, even if there were
some serious consequences, they would be easily rectified after the event. But
the evidence set out in this paper and referred to in the material to which I have
provided links demonstrates that none of these propositions is valid. I should
add that the sceptic must also believe, for example, that ”embedded chips”
would not have caused any problems – let alone a threat to the continuity of, for
example, telecommunication systems and utility provision – and that their
replacement was therefore unnecessary and another unwarranted expense. But
here too I believe I have produced sufficient evidence to rebut any such belief.

So how is it that Y2K has come to be regarded as a prime example of an
unnecessary scare?

Well, when I first heard about it in early 1996 (see A Personal Note on page 3), I
didnʼt believe it: it seemed to me it was exceptionally unlikely that, for all its
faults, the mighty computer industry could have been so negligent, even foolish,
as to have allowed the perpetuation of such a simple, seemingly obvious and, as
I was advised, dangerous state of affairs. Surely, if it were true, it would have
been sorted out long ago – and well before the advent of the new century? But I
was wrong: this absurdity had been allowed to happen; in my view, this was
extraordinarily irresponsible. I believe that that was, and still is, an
embarrassment to the IT industry. It was also a nuisance: contrary to common
belief, there wasnʼt a lot of money to be made from its solution: the big money
was substantially spent internally by organisations utilising their own IT staff.
And, in any case, the industry was far more interested in blowing up what
became the dotcom bubble. Moreover, the skills acquired in Y2K remediation
had only limited future value. Therefore the IT industry was, on the whole, not
unhappy that, after 2000, the matter, widely thought to be little more than
another false scare, came to be largely forgotten.

 14

Another factor – one that strongly influenced the characterisation of Y2K as an
unnecessary scare – was the attitude of the media. Those trying to draw
attention to the need for urgent action found initially that it was quite difficult to
get the media interested: computer-related stories are widely seen as boring.
But, when the media did get involved (largely when the embedded chip
concerns surfaced), they began to take the line that it was little more than a
scary millenarian fantasy. There were remarkably few serious attempts to
understand the issue – problems with complex “legacy” software in large,
typically financial, organisations were seen as especially boring. Instead, there
was a focus on the possible consequences of failure: advocates of the need for
action were constantly pressed to say what might happen if things went wrong
and, all too often, only that part of the interview was reported. So legitimate
warnings were ignored and replaced by wild prediction: “experts tell us that, at
the stroke of midnight on December 31st, planes will fall from the sky” … …
“ICBMs will be launched from their silos” … “nuclear plant will go critical” …
“there will be riots in the streets”, etc. Yet no one who was involved with and
understood the problem made any such predictionxxiv – indeed most tried to
avoid predication altogether. This is evidenced, for example, by the bankersʼ
warnings set out in References viii, ix, x and xi. Nonetheless, subsequent
commentators continue to use the fact that such “predictions” came to nothing
as evidence that the whole exercise was little more than a scare and a colossal
waste of money.

Another common assertion is that some businesses and, especially, some
countries did little or nothing about Y2K, yet experienced few or no problems.
Whatʼs usually missing from such claims is any hard evidence. The reality is
that, whereas itʼs true (as explained above at page 11) that most small and
many medium size companies had little to be concerned about (and, in any
case, most could easily fix, say, a faulty invoicing system after the date-change),
remedial action was taken in most countries throughout the world. It was
essentially a global, not a national problem. For example, in an interview prior to
a meeting of the United Nations International Y2K Cooperation Center in June
1999xxv (said at the time to be the largest meeting in the history of the UN), its
Director, Bruce McConnell, said,

"Its clear that there's a global effort underway. This is demonstrated by the
fact that we have over 160 countries coming to the meeting. Virtually all the
countries of the world have Y2K programs that are moving forward.” [He
added that he was] "very pleased at the level of activism, energy, and
initiative that people are showing and willingness to work outside their own
area and pitch in and help out on a group basis."

Banking, in particular, is intrinsically an international activity – see the
statements and advice from the Bank for International Settlements referred to in
page 7 and detailed in endnotes viii and ix. Note also that the World Bank
produced a “tool kit” re Y2K for developing economiesxxvi. Moreover, no bank or
other financial institution could regard the matter as resolved unless it had been
resolved also in overseas banks and by other, not necessarily financial,

 15

organisations with which it had dealings. So banking action had a substantial
knock-on effect throughout the world. Similar considerations applied to
telecommunicationsxxvii and other essentially international concerns such as
meteorologyxxviii and air traffic controlxxix.

So, contrary to the impression given by much of the media, international Y2K
remedial activity was substantial and widespread. Nonetheless, itʼs true that the
problem was considerably more serious in some countries than in others. For
example, unsurprisingly, little action was taken – or was necessary – in
underdeveloped countries such as Chad, Haiti and Afghanistan where few
businesses or services were computerised. But also some more developed
economies, such as countries in Eastern Europe, needed to do relatively little.
And that, paradoxically perhaps, was because they had introduced digital
computing on a substantial scale relatively late; therefore, unlike developed
Western economies, they did not rely on systems incorporating software
originally developed in the 1960s and 1970s. And, in any case, countries that
were less technologically developed and had simpler infrastructure had less to
go wrong and any problems were much easier to resolve. For example, many
developing countriesʼ telecommunications were controlled by analogue systems
(with gauges) not digital systems (with readouts) and thus were not at riskxxx.
Another factor affecting the amount of effort that was necessary is, again
paradoxically, that businesses and countries that started late were able to take
advantage of the experience gained and lessons learned by those that preceded
them: tools, shortcuts and efficient methods of working had been developed,
fears that turned out to be unnecessary had been thoroughly investigated and
eliminated (embedded chips in lifts (elevators) are a good example – see
Reference xx) and uncertainties had been tested and resolved. Such research
and information was, on the whole, made freely available. Itʼs considerations
such as these that lie behind the – essentially falsexxxi – claims that little (or
even nothing) was done in some developed Western economies such as Italy
and Spain.

Finally the cost – was it unnecessarily large? Well, certainly it was extremely
expensive: itʼs been estimated that between $300 and $500 billion was spent
worldwide. Was it really necessary to spend so much? Well, in one sense, I
suppose the answer is no: as noted above (page 13), the IT industry had
neglected or simply forgotten about something that should have been dealt with
far sooner. Had that happened, the task would undoubtedly have been easier
and less expensive.

Another factor affecting cost was that nothing like this had ever been done
before. Therefore, those involved in remediation (particularly at the beginning of
the exercise) had no established experience or expertise on which to build and,
unsurprisingly, wrong decisions were made, attempts at remediation proved
inadequate and blind alleys were investigated. That this was unnecessary can
only be contended with the benefit of hindsight: itʼs obviously true that, given the
experience and skills we now have, a similar job today would cost rather less.

 16

In any case, the cost per organisation was not so great. For example, in the UK,
British Telecom spent about £300 million – as did an average clearing bank. The
top UK businesses (the FTSE 100) averaged around £60 million. These sums,
especially when spread over 2 to 3 years, were small percentages of those
businessesʼ IT budgets. And, as well as fixing the Y2K problem, the exercise
brought some unexpected benefits: see Section 7 (p.18).

But an example of failure referred to in Section 6 (p.17) puts the issue of cost
into sharp focus: see the sectionʼs final paragraph on page 18. Note the
extraordinary cost of fixing just one relatively small failure (see Reference xlii). If
it cost £270 million to put that right, how can the £300m million spent by the
average UK bank to avoid the catastrophe of multiple failures possibly be
described as having been wasted?

Fears that things might go very badly wrong were understandable even if they
turned out to have been over cautious or exaggerated. After all, it was hard to
believe that most organisations would get it right, that nearly every programme
would be finished on time, that nothing of significance would be missed –
anywhere throughout the developed and developing world. That didnʼt fit with
normal experience of big projects. So maybe it was (just about) understandable
that some journalists, media commentators, prominent politicians and others
(usually who had made little attempt to understand the issue) made predictions
of disaster that went well beyond legitimate warning about the probable
consequence of failure to act.

And itʼs easy to be wise in 2011. When the pioneers started their Y2K
programmes in 1995 and 1996, very little had been done: so their fears were
then fully justified. Arguably greatest was the unknown: no one really understood
our dependence on computers. Or the interdependencies between computer
systems, both within and external to organisations. Or the impact on wider
society if things went wrong. The risk that they might go badly wrong was clear
and valid: it would have been irresponsible to ignore it. Even some overkill was
arguably prudent: for example, senior Russian and American military leaders
established the Center for Year 2000 Strategic Stabilityxxxii to ensure that no
accidental missile launchings occurred the transition. Was this really necessary?
Perhaps not – yet those involved presumably considered it a sensible
precaution. Who can say they were wrong? Itʼs significant that no insurance
company, whose essential business is the assessment of risk, would provide
Y2K cover except under near impossible conditions. And none of todayʼs “it was
a scam” experts were then advising large organisations that action was
unnecessary. Senior people who examined the risk decided that the job had to
be done. I know of none that made a deliberate decision to ignore it.
Uncertainties about the outcome continued right to the end: I know of no
organisation with a major programme that scaled it back as it learned more
about the nature of the problem or that felt it had wasted its time or money; or
subsequently felt it would have done just as well with less expenditure.

 17

Nonetheless, in retrospect, I think itʼs probable that more had been achieved by
early 1999 than many appreciated. Some did. For example, Peter de Jager –
who had taken a lead the early 1990s in warning about the dangers of Y2Kxxxiii

and who had issued some of the most serious warnings about the issue –
certainly thought the task was essentially done by early 1999. In January, he
claimed, "We've finally broken the back of the Y2K problem”xxxiv. (And see
Reference xxiv.) I thought then that was being rather optimisticxxxv. However, I
considered an EU assessment published in December 1999xxxvi to be broadly
accurate. It stated:

Countries and sectors throughout the EU now report that their
preparations are essentially complete, and that the rigorous contingency
plans which they have established to cope with exceptional events have
been tested and reinforced to cope with possible Y2K problems. They
consider themselves to be ready and expect no material disruption to their
operations. Their confidence is supported by the unprecedented degree of
industry and private-public collaboration which has taken place during
1999 to address this issue. Indeed, many believe that their ability to detect
and respond to problems which may occur at year end is now greater than
at any other time. [Original emphasis.]

In the event, of course, the worst fears were not realised and although, as noted
elsewhere in this paper, there were various failures throughout the world (others
included, for example, failures at nuclear plants and telecommunications centres
in Japanxxxvii and (one that may interest Ms Laframboise) an error that, when
corrected, established that 1934, not 1998, was the hottest year on record in the
United Statesxxxviii), most were fixed without serious trouble and without fanfare.
The latter is hardly surprising: in view of all the prior publicity, those who
experienced problems were reluctant to report it.

So the outcome was relatively benign. But it might well not have been – and
those who pioneered solutions, got on with it and did the boring job of fixing the
problem took the only rational and responsible course. None, I believe, regrets it
today.

6. The Year 2010 (or Y2.01K) problem

As noted in relation to Leap Years (page 9), the century date change was not
the only date-related problem for computers. A number of problems occurred in
2010xxxix (and more may occur in 2020), the most serious affecting banking
systems.

Why? Well, there were various possibilities. One is confusion between
hexadecimal number encoding and binary encoding – this affected some mobile
phones and so-called “EFTPOS” terminals (processing debit cards at point of
sale). Another arose as a result of “windowing” (see page 12) whereby two digits

 18

were retained but the code adjusted so that numbers up to and including, for
example, 10 were regarded as being in the twenty-first century and numbers
higher than 10 in the twentieth centuryxl; thus, for example, “09” would be read
as “2009” and “12” as “1912”. That would be fine so long as a more permanent
fix was devised well before 2010. But, in some cases, that seems not to have
happened. As IBM said in referring to such a solutionxli:

… keep in mind that when the new value comes around in the future, it will
need to be changed again. Also consider that the higher the value, the less
it can handle older dates, such as for date-of-birth or other back dates
where 19 is desired when the century control year is exceeded. … Note:
The only permanent solution is to provide the actual century (CC) within
the input …

The most important failures were in Germany, where about 30 million bankcards
had problems, and in Belgium, where Citibankʼs “digipass” customer
identification chips stopped working.

The German failure was reportedxlii to have cost €300m ($420m). Thatʼs hugely
significant: it puts into perspective claims that money spent on Y2K remediation
was wasted. That one relatively minor failure could cost so much to fix after it
had failed, emphasises the massive advantage of spending comparatively
modest sums (see pages 15 and 16) to avoid the possibility of countless such
failures.

7. Some Observations

Y2K remediation brought unexpected benefits

Many organisations, when faced with Y2K, decided that, as they were going to
replace their old legacy systems within the next few years, they might as well
replace them now, thereby avoiding many of the date-change difficulties. This
accounts for much of the overall expenditure. One of the consequences of this
was that there appear to have been marked productivity gains in the US and
elsewhere as better, more productive IT systems were brought on stream,
existing systems were much improved and improved methods of working were
established – all a direct result of Y2K remediationxliii.

One important example was that Y2K obliged organisations to sharpen up their
disaster recovery and contingency planningxliv, ensuring that, if there were
failures, the business would be able to cope. (This is another reason why fewer
problems were reported than many feared.) Today such “business continuity
planning” is standard business practice – particularly where new IT systems are
being introduced. That was not so prior to 2000.

 19

Itʼs been claimed, for example, that New York Cityʼs efficient computer systems
recovery after 9/11 was a result of system redundancies developed to combat
Y2Kxlv. And hereʼs a comment from an IMF reportxlvi on the post 9/11 resilience
of the US dollar Payment System:

Contingency planning advanced substantially in the run-up to the century
date change (Y2K). Y2K planning incorporated the involvement of senior
management and boards of directors and asked business managers to
consider how they would operate their businesses (and not just their back
offices) in the event of a Y2K-related disruption. In a letter to financial
institutions in March 2000, federal bank regulators noted that detailed
contingency plans developed for Y2K specified the minimum level of output
and services necessary for each major business process. They also noted
that simulated operational failures and scenario building helped reduce the
time needed to respond to operational problems and improved decision
making and internal communication.

External communication was a special focus of Y2K planning and included
maintaining lists of contact numbers for financial institutions, regulators,
and key infrastructure providers.

Another important Y2K lesson was that the resolution of computer problems
required a high level of cooperation – between businesses and between nations.
For example the Bank for International Settlements (see References ix and x)
established the Joint Year 2000 Councilxlvii – an ad hoc group that comprised
market regulators and insurance regulators as well as bank regulators –
covering over 200 major financial institutions from around the world. This level of
cooperation had never happened before.

Project management

One important lesson, however, seems not to have been learned. The
remarkable success of Y2K remediation demonstrates that a very large
computer project (and they donʼt get much larger than this) can be completed
successfully and on time – yet the reasons for that success have not been
widely understood and put into practice. It was, of course, a network of
interrelated projects – but pretty well each of them was characterised by a few
simple features:

(1) It had senior management support from the outset.
(2) It had a clearly defined and widely understood objective.
(3) It had a fixed, unalterable end-date.
(4) What had to be done was clearly established at an early stage.
(5) The need for the project was widely understood and accepted.
(6) Communication, internal and external, was prompt and comprehensive.

 20

If more projects were based on these features – and thereʼs no reason why they
should not be – there would, I believe, be far fewer disastrous IT project failures.

Y2K caused the importance of computers to be better understood

The computer date-change problem demonstrated how poorly we understood
the potential impact of a major computer upset and, in particular, the importance
of computers to business and society. The advent of the so-called “digital age”
brings huge new threats as well as opportunities: we are becoming increasingly
dependent on the smooth running of IT systems. Partly as a result of Y2K
remediation efforts, that dependency – and especially information security and
the reality that it is far more than an IT matter – is much better (although
probably still inadequately) understood.

8. Conclusion

Y2K related problems occurred widely over several years. Their effect was local
and - with some unfortunate exceptions - relatively unimportant. In particular,
because the vast majority of potential problems were fixed, there was no
example of the catastrophic knock-on effect that some had feared and of which
the Governor of the Bank of England had warned (see p.7). That there was not
is largely because his and other such warnings were heeded and acted upon.
Anyone who confuses such warnings with predictions, and failed predictions at
that, or with scaremongering or who regards Y2K as a hoax or believes efforts to
resolve it were a waste of money, hasn't tried to understand what was, in fact, a
bizarre, unnecessary but real and seriously worrying problem, resolved only
because of the massive effort deployed throughout the world.

Notes and references

i http://nofrakkingconsensus.com/2011/08/09/the-y2k-scare-the-media-climate-

change/

ii http://searches2.rootsweb.com/th/read/GENCMP/1999-02/0917875049

iii http://reason.com/archives/1999/07/01/grave-problem

iv From the testimony by Alan Greenspan, ex-Chairman of the Federal Reserve

before the Senate Banking Committee, February 25, 1998, ISBN 9780160579974

 21

v See this and similar examples here: ftp://csl.sri.com/pub/users/neumann/cal.ps (p

2). (This article provides a useful review of date-related computer problems.)

vi http://airwolf.lmtonline.com/news/archive/1230/pagea15.pdf

vii http://news.bbc.co.uk/1/hi/health/1541557.stm

viii http://www.bankofengland.co.uk/publications/news/1998/024.htm

ix http://www.bis.org/press/p970908a.htm

x http://www.bis.org/publ/bcbs31.htm

xi http://www.bis.org/review/r980626d.pdf

xii http://www.hhs.gov/asl/testify/t980507a.html

xiii http://www.parliament.uk/documents/post/pn089.pdf

xiv http://www.cplusplus.com/forum/beginner/23306/

xv For example: http://www.greenspun.com/bboard/q-and-a-fetch-

msg.tcl?msg_id=004KIW

xvi http://www.ianchadwick.com/essays/madness.html

xvii See, for example, http://y2k.berkeley.edu/computers/fixpcs/ and

http://www.fastcompany.com/magazine/24/powertools.html

xviii A good example was railway control systems:

http://www.indianexpress.com/Storyold/117946/ (This story also demonstrates
the detailed work that was undertaken in India.)

xix See for example this article re the need to replace older systems:

http://www.prosoft-technology.com/content/view/full/3780

xx http://articles.courant.com/1999-10-17/business/9910180929_1_elevator-

companies-y2k-problem-building-systems

xxi A review of the size and technical complexity of this task is provided by The

Year 2000 Software Problem by Capers Jones – published by ACM Press in
1998.

xxii http://www.itbusinessedge.com/cm/blogs/lawson/revenge-of-the-y2k-bug--some-

fixes-strike-back/?cs=40434

 22

xxiii http://web.caller.com/2000/january/14/today/national/5810.html (Note

incidentally the vast cost ($3.6 billion) reported here to have been incurred in
fixing the Pentagon’s computer systems.)

xxiv Peter de Jager, who as noted below (xxxiii and xxxiv) was a prominent advocate

for action at an early stage and who became convinced that the problem was
largely fixed by early 1999, demonstrated his confidence by booking a flight
from Chicago to London some months before the end of 1999 and was in the air
at the date change: http://www.theglobeandmail.com/archives/former-prophet-of-
doom-flies-to-london-to-prove-y2k-defeated/article577224/singlepage/
The reality of course was that, were any aircraft at risk of falling from the sky, it
wouldn’t be in the sky. Manufacturers and airlines carried out exhaustive tests to
ensure all was well: e.g. http://news.bbc.co.uk/1/hi/sci/tech/523239.stm (It’s
interesting to note from this that China had especial Y2K difficulties because of
its use of pirated software.)

xxv http://www.greenspun.com/bboard/q-and-a-fetch-msg.tcl?msg_id=000y7g

xxvi http://allafrica.com/stories/199901120152.html

xxvii http://www.itu.int/itunews/issue/1999/03/y2k.html

xxviii http://www.wmo.int/pages/prog/www/reports/Y2K-Reading.html

xxix http://www.rense.com/politics5/y2kyeahsure.htm

xxx African airports, for example, illustrated both extremes: on the one hand were

newly built airports such as Kenya's Eldoret International, equipped with new
and therefore fully compliant systems, while on the other were older-generation
airports where semi-automatic and manual systems remain in widespread use. In
both cases, this made them largely immune to Y2K problems:
http://www.flightglobal.com/articles/1999/11/24/58790/catching-african-
bugs.html

xxxi See Reference xxxvi (below) re an EU report that notes (in September 1999):

“Countries and sectors throughout the EU now report that their preparations are
essentially complete…” and this report (Reuters and others) detailing Italian
readiness: http://www.greenspun.com/bboard/q-and-a-fetch-
msg.tcl?msg_id=0029SZ
 These reports (re banking in South Africa, nuclear power in Korea and
preparations in Russia) are also interesting in this context and demonstrate the
absurdity of claims that nothing was done in such countries:
http://articles.chicagotribune.com/1999-11-30/news/9912010110_1_y2k-bug-
tito-mboweni-readiness
https://www.oecd-nea.org/nsd/docs/1999/cnra-r99-3/1-09.pdf
http://news.bbc.co.uk/1/hi/sci/tech/294912.stm

 (Likewise, note Reference xviii above re India)

xxxii http://www.defense.gov/advisories/advisory.aspx?advisoryid=1366

 23

xxxiii

 http://www.nhne.org/news/NewsArticlesArchive/tabid/400/articleType/ArticleVi
ew/articleId/6450/language/en-US/Peter-De-Jager-Receives-Award-For-Helping-
Avert-Y2K.aspx Note that de Jager’s Doomsday 2000 article
(http://www.window95.com/y2k/article/dejager.html) was a wake up call written
in September 1993 – over 2 years before the British Government (for example)
has even heard of the problem. And it was 5 years before he was convinced the
problem was essentially fixed: see xxxiv (below) and xxiv (above).

xxxiv http://greenspun.com/bboard/q-and-a-fetch-msg.tcl?msg_id=000Yi9

xxxv Although, by March, I was rather more optimistic:

http://news.bbc.co.uk/1/hi/sci/tech/296713.stm

xxxvi http://eur-

lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:1999:0651:FIN:EN:PDF

xxxvii http://archives.cnn.com/2000/TECH/computing/01/03/japan.nukes.y2k.idg/

xxxviii http://wattsupwiththat.com/2007/08/08/1998-no-longer-the-hottest-year-on-

record-in-usa/

xxxix http://www.cairns.com.au/article/2010/01/02/85845_local-business-news.html
 http://www.crn.com.au/News/163864,bank-of-queensland-hit-by-y201k-

glitch.aspx
 http://www.tuaw.com/2009/03/04/wwnc-09-official-announcements-and-the-

2010-bug/
 http://www.basissap.com/2010/01/sap-spool-issue-affects-all-releases/
 http://www.thelocal.de/sci-tech/20100104-24353.html

xl See the last paragraph here:

http://www.theregister.co.uk/2010/01/05/symantec_y2k10_bug/

xli https://www-304.ibm.com/support/docview.wss?uid=swg21419889

xlii http://www.guardian.co.uk/world/2010/jan/06/2010-bug-millions-germans

xliii http://archive.healthmgttech.com/archives/h0100managedcare.htm

 http://research.cs.queensu.ca/~cordy/Papers/IWPC03_Keynote.pdf

xliv http://www.projectauditors.com/Papers/BCP/BCP.html

xlv http://web.mit.edu/newsoffice/2002/terror-1120.html

xlvi http://www.imf.org/external/pubs/ft/fandd/2002/03/cumming.htm

xlvii http://www.bis.org/press/p990108.htm

